Math 261
Fall 2023
Lecture 11

Given $f(x)=x^{3}$, evaluate

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} . \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
&= \lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{K\left(3 x^{2}+3 x h+h^{2}\right)}{h} \\
&= \lim _{h \rightarrow 0}\left[3 x^{2}+3 x h+h^{2}\right]=3 x^{2}+3 x(0)+0^{2}=3 x^{2}
\end{aligned}
$$

for $\varepsilon=.1$, find $\delta>0$ such that $\lim _{x \rightarrow 2}\left(\frac{1}{2} x+3\right)=4$

1) Verify the limit

$$
\lim _{x \rightarrow 2}\left(\frac{1}{2} x+3\right)=\frac{1}{2}(2)+3=4
$$

2) $|f(x)-L|<\varepsilon$ whenever $|x-a|<\delta$

$$
\begin{aligned}
& \left|\frac{1}{2} x+3-4\right|<.1 \\
& \left|\frac{1}{2} x-1\right|<.1
\end{aligned}
$$

multiply both sides by a

$$
2\left|\frac{1}{2} x^{0}-1\right|<2(.1) \quad \delta=\cdot 2
$$

Sep 14-10:29 AM
for $\varepsilon=1$, Find $\delta>0$ such that $\lim _{x \rightarrow-2}\left(x^{2}-1\right)=3$

1) verify the limit

Pick δ to
Not symmetric about $x=-2$ be smaller distance
for $\varepsilon=1$, there is $\delta=.2$ Such that $\delta=.2$

$$
\lim _{x \rightarrow-2}\left(x^{2}-1\right)=3
$$

Sep 14-10:42 AM

for $\varepsilon=.5$, there is a $\delta>0$ Such that $\lim _{x \rightarrow 3}\left(x^{2}+2 x-2\right)=8=3$
For $\varepsilon>0$, there is a $\delta>0$ Such that

$$
\begin{array}{ll}
|f(x)-L|<\varepsilon \quad \text { whenever } & |x-a|<\delta \\
\left|x^{2}+2 x-2-13\right|<\varepsilon & |x-3|<\delta \\
\left|x^{2}+2 x-15\right|<\varepsilon & |x-3|<\delta \\
|(x+5)(x-3)|<\varepsilon & \delta=\frac{\varepsilon}{c} \\
\begin{array}{ll}
|x+5| & |x-3|<\varepsilon
\end{array} & \\
\underbrace{c}_{\text {Bound }} & |x-3|<\frac{c}{c}
\end{array}
$$

If $|x+5|<c$, then $|x-3|<c \mid$
let's agree that δ to be no more than 1 .

$$
\begin{aligned}
& \left.\begin{array}{rl}
\begin{aligned}
& \text { agree } \\
&|x-3|<1 \\
&-1<x-3<1
\end{aligned} \\
\text { Add } 8 & 7<x+5<9 \\
-9<7<x+5<9 \\
-9<x+5<9
\end{array} \right\rvert\, \\
& \text { For } \varepsilon=.5 \\
& |x+5|<9 \\
& \delta=\min \left\{1, \frac{5}{9}\right\} \quad \delta=\min \left\{1, \frac{8}{9}\right\} \\
& =\min \left\{1, \frac{1}{18}\right\}=\frac{1}{18}=.05 \approx 1
\end{aligned}
$$

Intermediate Value Theorem:
Suppose $f(x)$ is a continuous function on $[a, b]$ and let N be a number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$ There exists a number c in (a, b) Such that $f(c)=N$.
Consider $f(x)=x^{2}$ over $[2,3]$

class QE 7
Use ε and δ definition to prove $\lim _{x \rightarrow 6}\left(\frac{1}{6} x+4\right)=5$ $f(x)=\frac{1}{6} x+4$

1) Verify the limit

$$
\begin{aligned}
& L=5 \\
& a=6
\end{aligned}
$$

$$
\lim _{x \rightarrow 6}\left(\frac{1}{6} x+4\right)=\frac{1}{6}(6)+4=1+4=5 \sqrt{ }
$$

for $\varepsilon>0$, there is a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $|x-a|<\delta$

$$
\left|\frac{1}{6} x+4-5\right|<\varepsilon
$$

$$
\begin{aligned}
& \begin{array}{l}
\quad \rightarrow|x-6|<\delta \\
\left|\frac{1}{6} x-1\right|<\varepsilon \quad \longrightarrow|x-6|<6 \varepsilon \sigma
\end{array} \\
& \text { Multiply by } 6 \\
& 6\left|\frac{1}{6} x-1\right|<6 \varepsilon \quad \quad \begin{array}{l}
\text { choose } \\
S=6 \varepsilon
\end{array}
\end{aligned}
$$

Sep 14-11:20 AM

